5 research outputs found

    Towards Functional Preoperative Planning in Orthopaedic Surgery

    Get PDF
    Las cirug铆谋as del aparato locomotor suponen m谩s de 20 millones de intervencionesanuales para la correcci贸n de lesiones que afectan a m煤sculos, articulaciones,ligamentos, tendones, huesos o nervios; elementos que conforman el sistema musculoesquel茅tico. Este tipo de afecciones de la biomec谩nica pueden tener diversos or铆genes; siendo los principales los traumatismos, las lesiones degenerativas en huesos y tejidos blandos, los malos h谩bitos posturales o motores, y los de origen cong茅nito.El uso de las tecnolog铆as actuales en los procesos de correcci贸n de estas afecciones forma parte del d铆a a d铆a en los quir贸fanos y en la monitorizaci贸n de los pacientes.Sin embargo, el uso de t茅cnicas computacionales que permitan la preparaci贸n de las intervenciones quir煤rgicas antes de proceder con la cirug铆a est谩n todav铆a lejos de formar parte del proceso de evaluaci贸n preoperatoria en este tipo de lesiones. Por este motivo, el objetivo principal de esta tesis consiste en demostrar la viabilidad del uso de herramientas computacionales en la planificaci贸n preoperatoria de diferentes cirug铆as ortop茅dicas.Entre los tipos de cirug铆as m谩s comunes, la mayor parte de ellas se centran en las articulaciones del tren inferior de la anatom铆a humana. Por este motivo, este trabajo se centrar铆a en el an谩lisis de diferentes cirug铆as cuya finalidad es solucionar lesiones en las principales articulaciones del tren inferior: regi贸n sacrolumbar, cadera, rodilla y tobillo.Para poder realizar el an谩lisis de estas cirug铆as se hizo uso de algunas de lasherramientas computacionales m谩s usadas habitualmente y cuya capacidad en diversos 谩mbitos ha sido comprobada. Se ha utilizado la reconstrucci贸n 3D para la obtenci贸n de modelos anat贸micos sobre los que comprobar la viabilidad de las cirug铆as. Estas reconstrucciones se basan en las im谩genes m茅dicas obtenidas mediante Tomografia Axial Computerizada (TAC) o Resonancia Magn茅tica (RM). Las im谩genes procedentes de RM permiten diferenciar todos los tejidos de la anatom铆a, incluyendo los blandos tales como tendones o cart铆lagos; mientras que los TAC facilitan la diferenciaci贸n de los huesos. Esta 煤ltima es la prueba m谩s habitual en los diagn贸sticos.Para su an谩lisis y reconstrucci贸n se hizo uso de los software Mimics v 20.0 y3-matic 11.0 (Materialise NV, Leuven, Belgium). Como alternativa para la generaci贸n de los modelos cuando no se dispone de las im谩genes necesarias para realizar la reconstrucci贸n o cuando se requiere dotar de flexibilidad a estos modelos, se recurri贸 al modelado en el software de an谩lisis por elementos finitos Abaqus/CAE v.6.14 (Dassault Syst`emes, Suresnes, France). Dicho software fue adem谩s utilizado para la simulaci贸n del efecto de las diferentes cirug铆as sobre la regi贸n de inter茅s. Para resalizar las simulaciones, se incluyeron en los modelos aquellos par谩metros, elementos y condiciones necesarios para poder representar las carater铆sticas propias de cada cirug铆a. Finalmente, para aquellas situaciones que requer铆an del an谩lisis de datos se hizo uso de tecnolog铆as de machine learning. La soluci贸n seleccionada para estos casos fueron las redes neuronales artificiales (ANN). Dichas redes se desarrollaronhaciendo uso del software MATLAB R2018b (MathWorks, Massachusetts, USA).El estudio de la rodilla se centra en uno de los ligamentos clave en la estabilidad de la r贸tula y que, sin embargo, es uno de los menos analizados hasta ahora, el ligamento medial patelofemoral. La reconstrucci贸n de este ligamento es la principal soluci贸n cl铆nica para solventar esta inestabilidad y diferentes cirug铆as utilizadas para dicho fin han sido analizadas mediante el desarrollo de un modelo param茅trico en elementos finitos que permita su simulaci贸n. En este modelo es posible adaptar la geometr铆a de la rodilla de forma que se puedan simular diferentes condiciones que pueden afectar a la estabilidad de la r贸tula, tales como la displasia troclear y la patella alta.El estudio de la regi贸n sacrolumbar se centra en el an谩lisis de diferentes posibles configuraciones para las cirug铆as de fusi贸n vertebral. El an谩lisis se centr贸 en la fijaci贸n con tornillos y la influencia del Polimetimetacrilato (PMMA) como elemento de fijaci贸n en las v茅rtebras. Para ello, se reconstruy贸 el modelo 贸seo de diferentes pacientes que necesitaron este tipo de intervenci贸n. Sobre estos modelos se simularon mediante elementos finitos las diferentes configuraciones consideradas de forma que se pudiera comparar su comportamiento en diferentes casos.En el caso de la cadera, el estudio se centra en el an谩lisis de la artroplastia total de cadera, que implica el reemplazo de la articulaci贸n anat贸mica por una pr贸tesis habitualmente de titanio. Cuando este tipo de cirug铆as es realizado, es com煤n que surjan posteriormente problemas derivados de la disposici贸n de la pr贸tesis y que pueden llevar al pinzamiento entre sus componentes y, en algunas ocasiones, su dislocaci贸n.Esto ocurre cuando el rango de movimiento de la articulaci贸n es reducido. Este tipo de sucesos son m谩s comunes cuando se realizan los movimientos de extensi贸n externa (EE) o de rotaci贸n interna (RI) de la extremidad. El estudio se desarroll贸 con el objetivo de elaborar una herramienta computacional capaz de predecir este choque y dislocaci贸n bas谩ndose en el di谩metro de la cabeza del femur y de los 谩ngulos de abducci贸n y anteversi贸n. Para ello, se recurri贸 al uso de redes neuronales artificales(ANN). Se configur贸 una red independiente para cada movimiento (EE y RI) y cada posible evento (pinzamiento y dislocaci贸n), de forma que se obtuvieron cuatro redes completamente independientes. Para el entrenamiento y primer testeo de las redes se recurri贸 a un modelo param茅trico en elementos finitos de la pr贸tesis con el que se realizaron diferentes simulaciones determinando el rango de movimiento para cada caso. Finalmente, las redes fueron de nuevo validadas con el uso de datos procedentes de pacientes que sufrieron dislocaci贸n tras ser sometidos a este tipo de cirug铆as.Finalmente, el estudio de la regi贸n del tobillo se centr贸 en la lesi贸n de la sindesmosis del tobillo. Este tipo de lesiones implica la rotura de algunos de los ligamentos que unen los principales huesos de esta articulaci贸n (tibia, peron茅 y astr谩galo) junto con parte de la membrana intra贸sea, que se extiende a lo largo de la tibia y el peron茅 ligando ambos huesos. Cuando se produce este tipo de lesiones, es necesario recurrir a la inclusi贸n de elementos que fijen la articulaci贸n y prevengan la separaci贸n de los huesos. Los m茅todos m谩s comunes y que centran este an谩lisis comprenden la fijaci贸n con tornillos y la fijaci贸n mediante bot贸n de sutura. Para poder realizar un an谩lisis que permita comparar la efectividad y incidencia de este tipo de cirug铆as se recurri贸a la reconstruccci贸n 3D de la articulaci贸n de un paciente que sufri贸 este tipo de lesi贸n. Con este modelo geom茅trico, se procedi贸 al desarrollo de diferentes modelos en elementos finitos que incluyeran cada una de las alternativas consideradas. Las simulaciones de estos modelos junto a las situaciones anat贸micas y lesionadas, permiti贸 hacer una aproximaci贸n sobre la soluci贸n quir煤rgica que mejor restablece el estado incial sano de la regi贸n afectada.Locomotor system surgeries represents more the 20 million interventions per year for the correction of injuries that affect muscles, joints, ligaments, tendons, bones or nerves; elements that form themusculoskeletal system. This kind of biomechanical affections may have several sources, being the main ones traumas, bones and soft tissues degenerative injuries, poor postural or motor habits and those of congenital source. The use of current technologies in the correction process for these injuries is part of the day-to-day in the operating rooms and the monitoring of patients. However, the use of computational tools that allow preoperative planning is still far from being part of the preoperative evaluation process in this kind of injuries. For this reason, the main goal of this thesis consists in demonstrating the viability of the use of computational tools in the preoperative planning of different orthopaedic surgeries. Among the most common surgeries, most of them focus in the lower body joints of the human anatomy. For this reason, this work will focus in the analysis of different surgeries whose purpose is to solve injuries in the main joints of the lower body: lumbosacral region, hip, knee and ankle. Some of the most commonly used computational tools, and whose capability in different fields has been widely proven, were used in order to be able of performing the analysis of these surgeries. 3D reconstruction has been used for obtaining anatomical models in which the viability of the surgeries could be verified. These reconstructions are based on the medical images obtained through Computerized Tomography (CT) or Magnetic Resonance Imaging (RMI). Images from RMI allow differentiating all the tissues of the anatomy, including soft ones such as tendons and cartilages; while CT scans make easier the bones differentiation. This last procedure is the most commonly used in diagnoses. For their analysis and reconstruction software Mimics v 20.0 and 3-Matic 11.0 (Materialise NV, Leuven, Belgium) were used. As alternative for the models generation when the necessary images for the reconstruction are not available or when flexibility is required for these models, modelling in the Finite Element Analysis software Abaqus/CAE v.6.14 (Dassault Syst鈥榚mes, Suresnes, France) was used. This software was also used for the simulation of the effects of the different surgeries in the interest region. In order to perform the simulations, those parameters, elements and conditions necessary to represent the characteristics of each surgery were included. Finally, for those situations requiring data analysis, machine learning technologies were used. The selected solution for these cases were Artificial Neural Networks (ANN). These networks were developed using the software MATLAB R2018b (MathWorks, Massachusetts, USA). The study of the knee joint focuses in one of the key ligaments for the patellar stability and which, however, is one of the least analysed so far, the medial patellofemoral ligament. The reconstruction of this ligament is the main clinical solution for solving this instability and different surgeries used for that purpose have been analysed through the development of a finite element parametric model that allows their simulation. In this model adapting knee geometry is possible so that those conditions that can affect the stability of the patella, such as trochlear dysplasia or patella alta, can be simulated. The study of the lumbosacral region focuses in the analysis of different possible configurations for spine fusion surgeries. The analyses focused in the pedicle screws fixation and the influence of polymethyl methacrylate (PMMA) as fixation element in the vertebrae. To do this, osseous models for different patients that required this kind of intervention were reconstructed. The different configurations considered were simulated on these models through finite element analysis comparing their behaviour. In the case of the hip, the study focuses in the analysis of the total hip arthroplasty, which implies replacing the anatomical joint by a prosthesis, usually made of titanium. When this kind of surgery is performed, it is common for later issues arising from the arrangement of the prosthesis and which can lead to impingement between its components and, on some occasions, their dislocation. This happens when the range of movement of the joint is limited. This kind of events are more common when the external extension (EE) or internal rotation (IR) movements of the leg are performed. The study was developed with the goal of elaborating a computational tool able to predict the impingement and dislocation based on the diameter of the head of the femur and the anteversion and abduction angles. To do this, artificial neural networks (ANN) were used. An independent network was configured for each movement (EE and IR) and for each possible event (impingement and dislocation), so that four completely independent networks. For the training and the first testing of the networks, a parametric finite element model of the hip was used; with which different simulations were performed determining the range of movement for each case. Finally, the networks were validated again with the use of data proceeding from patients that suffered dislocation after going through this kind of surgery. Finally, the study of the ankle region focused in the ankle syndesmosis injury. This kind of injuries implies the tear of some ligaments that connect the main bones of the joint (tibia, fibula and talus) together with part of the intraosseous membrane, which extends along the tibia and fibula linking both bones. When this kind of injuries happens, it is necessary to resort to the inclusion of elements that fix the joint and prevent the bones distance. The most common methods, which focus this analysis, include the screws fixation and the suture button fixation. In order to carry out an analysis that allows comparing the effectiveness and incidence of this kind of surgeries, a 3D reconstruction of the joint from a patient that suffered this kind of injury was used. With this geometrical model, different finite element models including each of the considered alternatives were developed. The simulations of these models, together with the injured and anatomical situations, allowed an approximation of the surgical solution that better restores the initial healthy state of the affected region.<br /

    Biomechanical evaluation of syndesmotic fixation techniques via finite element analysis: Screw vs. suture button

    Get PDF
    Background and Objective: Tibiofibular syndesmotic injuries may cause degenerative changes, reduction in ankle function and compromising ankle stability. Different fixation techniques try to restore its functionality. Screw-fixation is the gold-standard. Recently, suture-button fixation has aroused the attention because it allows for physiologic micromotion while maintaining an accurate reduction. The aim of this study is to compare the biomechanical behaviour of both fixation techniques using the finite element method. Methods: A three-dimensional finite element model of the tibiofibular joint was reconstructed simulating the intact ankle and the injured syndesmosis. Then, different methods of syndesmosis fixation were analysed: screws (number of cortices, number of screws and distance between screws) and suture buttons (single, double parallel and double divergent with a sensitivity analysis on the pretension forces) configuration. Ligaments and cartilages were included and simulated as spring elements. Physiological loads during stance phase were simulated. Results: Syndesmosis widening and von Mises stresses were computed. Syndesmosis widening in the injured configuration compromised joint stability (2.06 mm), whereas using a single quadricortical screw (0.18 mm) stiffened the joint. Syndesmosis widening using suture-buttons were closer to syndesmosis widening of the intact ankle configuration (0.97 mm). Von Mises stresses were higher for the titanium screws than for the suture buttons. Conclusions: A detailed biomechanical comparison among different syndesmotic fixation was performed. Suture buttons have advantages with regard to syndesmosis widening in comparison to screw fixation. This fact supports the good long-term clinical results obtained with suture buttons fixation. The proposed methodology could be an efficient tool for preoperative planning

    Estudio del proceso de remodelaci贸n de arterias debido a angioplastia

    Get PDF
    La angioplastia con balloon es uno de los procedimientos m谩s habituales para solucionar los problemas de oclusi贸n arterial. Durante este proceso se utiliza un globo (balloon) que es inflado en el interior de la arteria para restaurar la mayor secci贸n de flujo sangu铆neo posible. Durante este procedimiento se producen ciertas lesiones en el endotelio que favorecen la deposici贸n y s铆ntesis de col谩geno, que puede provocar una nueva obstrucci贸n en el torrente sangu铆neo (remodelaci贸n constrictiva). Este hecho se ve favorecido principalmente por la actividad de 3 grupos de sustancias: TGF-尾, MMP y TIMP. La difusi贸n de estas sustancias a trav茅s de las c茅lulas arteriales es un factor determinante en la concentraci贸n final de col谩geno en la zona afectada. En este trabajo se va a realizar una simulaci贸n de la difusi贸n de estas sustancias, de forma que pueda determinarse la forma en que aumenta o decrece su concentraci贸n en la zona afectada tras la intervenci贸n

    Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model

    Get PDF
    Objectives: To evaluate the effect of various medial patellofemoral ligament (MPFL) fixation techniques on patellar pressure compared with the native knee. Methods: A finite element model of the patellofemoral joint consisting of approximately 30,700 nodes and 22,200 elements was created from computed tomography scans of 24 knees with chronic lateral patellar instability. Patellar contact pressures and maximum MPFL graft stress at five positions of flexion (0掳, 30掳, 60掳, 90掳, and 120掳) were analyzed in three types of MPFL reconstruction (MPFLr): (1) static/anatomic, (2) dynamic, using the adductor magnus tendon (AMT) as the femoral fixation, and (3) dynamic, using the quadriceps tendon as the attachment (medial quadriceps tendon-femoral ligament (MQTFL) reconstruction). Results: In the static/anatomic technique, the patellar contact pressures at 0掳 and 30掳 were greater than in the native knee. As in a native knee, the contact pressures at 60掳, 90掳, and 120掳 were very low. The maximum MPFL graft stress at 0掳 and 30掳 was greater than in a native knee. However, the MPFL graft was loose at 60掳, 90掳, and 120掳, meaning it had no tension. In the dynamic MPFLr using the AMT as a pulley, the patellar contact pressures were like those of a native knee throughout the entire range of motion. However, the maximum stress of the MPFL graft at 0掳 was less than that of a native ligament. Yet, the maximum MPFL graft stress was greater at 30掳 than in a native ligament. After 30掳 of flexion, the MPFL graft loosened, similarly to a native knee. In the dynamic MQTFL reconstruction, the maximum patellar contact pressure was slightly greater than in a normal knee. The maximum stress of the MPFL graft was much greater at 0掳 and 30掳 than that of a native MPFL. After 30掳 of flexion, the MQPFL graft loosened just as in the native knee. Conclusions: The patellar contact pressures after the dynamic MPFLr were like those of the native knee, whereas a static reconstruction resulted in greater pressures, potentially increasing the risk of patellofemoral osteoarthritis in the long term. Therefore, the dynamic MPFLr might be a safer option than a static reconstruction from a biomechanical perspective

    Parametric finite element model of medial patellofemoral ligament reconstruction model development and clinical validation

    Get PDF
    Background: Currently, there is uncertainty regarding the long-term outcome of medial patellofemoral ligament reconstructions (MPFLr). Our objectives were: (1) to develop a parametric model of the patellofemoral joint (PFJ) enabling us to simulate different surgical techniques for MPFLr; (2) to determine the negative effects on the PFJ associated with each technique, which could be related to long-term deterioration of the PFJ. Methods: A finite element model of the PFJ was created based on CT data from 24 knees with chronic lateral patellar instability. Patella contact pressure and maximum MPFL-graft stress at five angles of knee flexion (0, 30, 60, 90 and 120掳) were analysed in three types of MPFLr: anatomic, non-anatomic with physiometric behaviour, and non-anatomic with non-physiometric behaviour. Results: An increase in patella contact pressure was observed at 0 and 30掳 of knee flexion after both anatomic and non-anatomic MPFLr with physiometric behaviour. In both reconstructions, the ligament was tense between 0 and 30掳 of knee flexion, but at 60, 90 and 120掳, it had no tension. In the third reconstruction, the behaviour was completely the opposite. Conclusion: A parametric model of the PFJ enables us to evaluate different types of MPFLr throughout the full range of motion of the knee, regarding the effect on the patellofemoral contact pressure, as well as the kinematic behaviour of the MPFL-graft and the maximum MPFL-graft stress
    corecore